Package: BCDAG 1.1.3

Alessandro Mascaro

BCDAG: Bayesian Structure and Causal Learning of Gaussian Directed Graphs

A collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>.

Authors:Federico Castelletti [aut], Alessandro Mascaro [aut, cre, cph]

BCDAG_1.1.3.tar.gz
BCDAG_1.1.3.zip(r-4.5)BCDAG_1.1.3.zip(r-4.4)BCDAG_1.1.3.zip(r-4.3)
BCDAG_1.1.3.tgz(r-4.5-any)BCDAG_1.1.3.tgz(r-4.4-any)BCDAG_1.1.3.tgz(r-4.3-any)
BCDAG_1.1.3.tar.gz(r-4.5-noble)BCDAG_1.1.3.tar.gz(r-4.4-noble)
BCDAG_1.1.3.tgz(r-4.4-emscripten)BCDAG_1.1.3.tgz(r-4.3-emscripten)
BCDAG.pdf |BCDAG.html
BCDAG/json (API)
NEWS

# Install 'BCDAG' in R:
install.packages('BCDAG', repos = c('https://alesmascaro.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/alesmascaro/bcdag/issues

Datasets:
  • leukemia - Protein levels for 68 diagnosed AML patients of subtype M2

On CRAN:

Conda:

4.11 score 3 stars 17 scripts 479 downloads 11 exports 20 dependencies

Last updated 12 days agofrom:74fafcb637. Checks:2 ERROR, 6 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesFAILFeb 27 2025
R-4.5-winWARNINGFeb 27 2025
R-4.5-macWARNINGFeb 27 2025
R-4.5-linuxERRORFeb 27 2025
R-4.4-winWARNINGFeb 27 2025
R-4.4-macWARNINGFeb 27 2025
R-4.3-winWARNINGFeb 27 2025
R-4.3-macWARNINGFeb 27 2025

Exports:as_graphNELcausaleffectget_causaleffectget_diagnosticsget_edgeprobsget_MAPdagget_MPMdagget_neighboringDAGslearn_DAGrDAGrDAGWishart

Dependencies:BiocGenericsclicpp11genericsgluegraphgRbaseigraphlatticelifecyclemagrittrMatrixmvtnormpkgconfigRcppRcppArmadilloRcppEigenRgraphvizrlangvctrs