Package: BCDAG 1.1.1
Alessandro Mascaro
BCDAG: Bayesian Structure and Causal Learning of Gaussian Directed Graphs
A collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>.
Authors:
BCDAG_1.1.1.tar.gz
BCDAG_1.1.1.zip(r-4.5)BCDAG_1.1.1.zip(r-4.4)BCDAG_1.1.1.zip(r-4.3)
BCDAG_1.1.1.tgz(r-4.4-any)BCDAG_1.1.1.tgz(r-4.3-any)
BCDAG_1.1.1.tar.gz(r-4.5-noble)BCDAG_1.1.1.tar.gz(r-4.4-noble)
BCDAG_1.1.1.tgz(r-4.4-emscripten)BCDAG_1.1.1.tgz(r-4.3-emscripten)
BCDAG.pdf |BCDAG.html✨
BCDAG/json (API)
NEWS
# Install 'BCDAG' in R: |
install.packages('BCDAG', repos = c('https://alesmascaro.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/alesmascaro/bcdag/issues
- leukemia - Protein levels for 68 diagnosed AML patients of subtype M2
Last updated 5 months agofrom:067887e2c1. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 26 2024 |
R-4.5-win | OK | Oct 26 2024 |
R-4.5-linux | OK | Oct 26 2024 |
R-4.4-win | OK | Oct 26 2024 |
R-4.4-mac | OK | Oct 26 2024 |
R-4.3-win | OK | Oct 26 2024 |
R-4.3-mac | OK | Oct 26 2024 |
Exports:as_graphNELcausaleffectget_causaleffectget_diagnosticsget_edgeprobsget_MAPdagget_MPMdagget_neighboringDAGslearn_DAGrDAGrDAGWishart
Dependencies:BiocGenericsclicpp11gluegraphgRbaseigraphlatticelifecyclemagrittrMatrixmvtnormpkgconfigRcppRcppArmadilloRcppEigenRgraphvizrlangvctrs
Elaborate on the output of learn_DAG() using get_ functions
Rendered frombcdag_getfamily.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2024-02-09
Started: 2022-01-20
MCMC scheme for posterior inference of Gaussian DAG models: the learn_DAG() function
Rendered frombcdag_learnDAG.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2024-02-09
Started: 2022-01-20
Random data generation from Gaussian DAG models
Rendered frombcdag_generatedata.Rmd
usingknitr::rmarkdown
on Oct 26 2024.Last update: 2024-01-01
Started: 2021-12-27
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Transform adjacency matrix into graphNEL object | as_graphNEL |
Compute causal effects between variables | causaleffect |
Credible Intervals for bcdagCE Object | confint.bcdagCE |
Estimate total causal effects from the MCMC output | get_causaleffect |
MCMC diagnostics | get_diagnostics |
Compute posterior probabilities of edge inclusion from the MCMC output | get_edgeprobs |
Compute the maximum a posteriori DAG model from the MCMC output | get_MAPdag |
Compute the median probability DAG model from the MCMC output | get_MPMdag |
Enumerate all neighbors of a DAG | get_neighboringDAGs |
MCMC scheme for Gaussian DAG posterior inference | learn_DAG |
Protein levels for 68 diagnosed AML patients of subtype M2 | leukemia |
bcdag object plot | plot.bcdag |
bcdagCE object plot | plot.bcdagCE |
bcdag object print | print.bcdag |
bcdagCE object print | print.bcdagCE |
Generate a Directed Acyclic Graph (DAG) randomly | rDAG |
Random samples from a compatible DAG-Wishart distribution | rDAGWishart |
bcdag object summaries | summary.bcdag |
bcdagCE object summary | summary.bcdagCE |