Package: BCDAG 1.1.3

Alessandro Mascaro

BCDAG: Bayesian Structure and Causal Learning of Gaussian Directed Graphs

A collection of functions for structure learning of causal networks and estimation of joint causal effects from observational Gaussian data. Main algorithm consists of a Markov chain Monte Carlo scheme for posterior inference of causal structures, parameters and causal effects between variables. References: F. Castelletti and A. Mascaro (2021) <doi:10.1007/s10260-021-00579-1>, F. Castelletti and A. Mascaro (2022) <doi:10.48550/arXiv.2201.12003>.

Authors:Federico Castelletti [aut], Alessandro Mascaro [aut, cre, cph]

BCDAG_1.1.3.tar.gz
BCDAG_1.1.3.zip(r-4.5)BCDAG_1.1.3.zip(r-4.4)BCDAG_1.1.3.zip(r-4.3)
BCDAG_1.1.3.tgz(r-4.5-any)BCDAG_1.1.3.tgz(r-4.4-any)BCDAG_1.1.3.tgz(r-4.3-any)
BCDAG_1.1.3.tar.gz(r-4.5-noble)BCDAG_1.1.3.tar.gz(r-4.4-noble)
BCDAG_1.1.3.tgz(r-4.4-emscripten)BCDAG_1.1.3.tgz(r-4.3-emscripten)
BCDAG.pdf |BCDAG.html
BCDAG/json (API)
NEWS

# Install 'BCDAG' in R:
install.packages('BCDAG', repos = c('https://alesmascaro.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/alesmascaro/bcdag/issues

Datasets:
  • leukemia - Protein levels for 68 diagnosed AML patients of subtype M2

On CRAN:

Conda:

5.58 score 3 stars 17 scripts 442 downloads 11 exports 20 dependencies

Last updated 30 days agofrom:74fafcb637. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 29 2025
R-4.5-winOKMar 29 2025
R-4.5-macOKMar 29 2025
R-4.5-linuxOKMar 29 2025
R-4.4-winOKMar 29 2025
R-4.4-macOKMar 29 2025
R-4.4-linuxOKMar 29 2025
R-4.3-winOKMar 29 2025
R-4.3-macOKMar 29 2025

Exports:as_graphNELcausaleffectget_causaleffectget_diagnosticsget_edgeprobsget_MAPdagget_MPMdagget_neighboringDAGslearn_DAGrDAGrDAGWishart

Dependencies:BiocGenericsclicpp11genericsgluegraphgRbaseigraphlatticelifecyclemagrittrMatrixmvtnormpkgconfigRcppRcppArmadilloRcppEigenRgraphvizrlangvctrs

Elaborate on the output of learn_DAG() using get_ functions

Rendered frombcdag_getfamily.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2025-02-27
Started: 2022-01-20

MCMC scheme for posterior inference of Gaussian DAG models: the learn_DAG() function

Rendered frombcdag_learnDAG.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2024-02-09
Started: 2022-01-20

Random data generation from Gaussian DAG models

Rendered frombcdag_generatedata.Rmdusingknitr::rmarkdownon Mar 29 2025.

Last update: 2024-01-01
Started: 2021-12-27